import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import learning_curve
pipe_lr=make_pipeline(StandardScaler(), LogisticRegression(penalty='l2', random_state=1, max_iter=10000))
train_sizes, train_scores, test_scores=\
learning_curve(estimator=pipe_lr, X=X_train, y=y_train, train_sizes=np.linspace(0.1, 1.0, 10), cv=10, n_jobs=1)
train_mean=np.mean(train_scores, axis=1)
train_std=np.std(train_scores, axis=1)
test_mean=np.mean(test_scores, axis=1)
test_std=np.std(test_scores, axis=1)
plt.plot(train_sizes, train_mean, color='blue', marker='o', markersize=5, label='Training accuracy')
plt.fill_between(train_sizes, train_mean+train_std, train_mean-train_std, alpha=0.15, color='blue',)
plt.plot(train_sizes, test_mean, color='green', linestyle='--', marker='s', markersize=5, label='Validation accuracy')
plt.fill_between(train_sizes, test_mean+test_std, test_mean-test_std, alpha=0.15, color='green')
plt.grid()
plt.xlabel('Number of training examples')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.ylim([0.8, 1.03])
plt.tight_layout()
plt.show()